

omprendre le monde

Outline

I / Introduction to band structure and electronic transport

II / Experimental result : Quantum Spin Hall Effect

III / Anomalous transport and Berry curvature

IV / A glimpse of topology

I / Schrodinger equations : from atoms to solids

Schrodinger equation describes evolution of the quantum state of a particle

Electron trapped in a potential landscape

Discrete energy levels inside the well : index n

Comprendre le monde

Hybridization of the electronic wavefunctions

I / Band structure and reciprocal space

Crystal : periodic
arrangement
Fourier transform in
space
$$\psi_{\underline{n},k}(r) = e^{ik \cdot r} u_{\underline{n}}(r)$$
$$\mathcal{H}(q) = e^{-iqr} \mathcal{H}e^{iqr} :$$

Hamiltonian for k space : band structure

I / Metals and insulators

Electronic conductance is a property of the Fermi surface

Metal or insulator depending on the position of the Fermi energy

No transverse conductance if no magnetic field

morendre le monde

I / Hall Effect

In the presence of a magnetic field : Hall Effect, it is possible to have a transverse conductance due to edge channels

Quantification of conductance because edge channels immune to backscattering

PARIS

II / Quantum Spin Hall Effect

2.0

1.5

Experimental observation on sandwiches of CdTe and HgTe

Changing the thickness of HgTe, transition from normal regime to anormal regime : apparition of quantized conductance

IV

0.0

0.5

 $(V_q - V_{thr}) / V$

1.0

 10^{3}

-1.0

-0.5

II / Quantum Spin Hall Effect

ш

Two modes per edge with opposite spin and velocities

Transverse spin conductance without charge : spintronics

Inverted band structure of the ^{0.0} two materials

X

III / Electric conductance

No magnetic field : no transverse conductance

Quantum correction : treat the velocity as an operator

III / Quantum corrections to electric current

$$\delta |n_k\rangle = \sum_{n' \neq n} \frac{\langle n'_k | eEx | n_k \rangle}{(\epsilon_{nk} - \epsilon_{n'k})} |n'_k\rangle$$

Allow for *interband transition* processes

Response of the system is a mean value of the current

UNIVERSITÉ

SUD

III / Berry curvature and anomalous conductivity

PARIS

Effect of the whole band geometry, *non-local*

Varies with the occupation of the band

Compute the new mean value of the velocity operator and use $x \leftrightarrow i\partial_k$

Apparition of the Berry curvature

$$\Omega_{n}^{\mu\nu}(k) = Im \left[\sum_{n' \neq n} \frac{\langle n_k | \partial_\mu \mathcal{H} | n'_k \rangle \langle n'_k | \partial_\nu \mathcal{H} | n_k \rangle}{(\epsilon_{nk} - \epsilon_{n'k})^2} \right]$$

III / A simple example : a two level system

01/03/19

III / Berry curvature and symmetries

Time reversal symmetry $\Omega_n(-k) = -\Omega_n(k)$

- Inversion symmetry $\Omega_n(-k) = \Omega_n(k)$
- Total Berry curvature

 $\sum_{n} \Omega_n(k) = 0$

n

IV / Analogy with magnetism

Magnetism Berry

Real space : r

Reciprocal space : k

morendre le monde

$$\nabla_r \times A(r) = B(r) \qquad \nabla_k \times \mathcal{A}_n(k) = \Omega_n(k)$$
$$\vec{F} = -e\vec{v} \times \vec{B} \qquad \vec{v}_{nk}^a = \frac{e}{\hbar}\vec{E} \times \vec{\Omega}_n(k)$$

IV / Chern number and quantization

PARIS

$$C_n = \int_{BZ} \frac{d^2k}{2\pi} \Omega_n(k) \in \mathbb{Z}$$

It is only linked to the topology of the space spanned by the eigenvectors

Protected by the gap of the system

Chern number : number of edge states that will flow. Sign indicates direction

Case of QSHE : 2 copies of previous

Conductivity in metals : band structure and shape of its Fermi surface

Quantum corrections due to interband transitions can lead to anomalous transport : Berry curvature

Anomalous transport comes from topological invariants of the band structure : robustness of quantization

References

Bernevig, B. A., Hughes, T. L., & Zhang, S. C. (2006). Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 314(5806), 1757-1761.

König, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L. W., ... & Zhang, S. C. (2007). Quantum spin Hall insulator state in HgTe quantum wells. Science, 318(5851), 766-770.

Xiao, D., Chang, M. C., & Niu, Q. (2010). Berry phase effects on electronic properties. Reviews of modern physics, 82(3), 1959.

IV / Link with topology and differential geometry

$$\Omega_n(k) = i \langle \nabla_k n_k | \times | \nabla_k n_k \rangle$$

Berry curvature can be interpreted as an object from differential geometry

Appears when differentiating quantities along with the Berry connection

$$\mathcal{A}_n(k) = i \langle n_k | \nabla_k | n_k \rangle$$

IV / Topological obstruction

Hairy ball theorem : it is impossible to put hair on a whole sphere without having a singular point

However it is possible on a donut for instance

Topological nature of the object is different : genus of the surface

IV / Chern number and quantization

$$C_n = \int_{BZ} \frac{d^2k}{2\pi} \Omega_n(k) \in \mathbb{Z}$$

It is only linked to the topology of the space spanned by the eigenvectors

For a 2-level system, the eigenvectors live on a sphere (Bloch sphere)

It is equal to the number of times the map wraps the sphere

Comprendre le monde

Berry curvature and semi classical approach ? Projection ? SO ? Spin ?

Notion of projection, projected physics on one band

How to project out higher states

The position operator is ill defined in Bloch Hamiltonian

Berry curvature

Comprendre le monde, construire l'avenire

Berry curvature

Comprendre le monde, construire l'avenire