HELO!

I am Essghaier Shayma I am here because I love cookies and presentations It is my first time presenting in english ... (suspense)

MY ADVENTUDRE IN LAB :

UNCONVENTIONAL SUPERCONDUCTORS ET₂X

MY ADVENTUDRE IN LAB :

UNCONVENTIONAL SUPERCONDUCTORS

ET₂X

A FEW YEARS BEFORE MY BIRTH ...

• In 1908, Heike Kamerlingh Onnes succeeded in liquefying Helium

"Mmmmmh ... what happens to the resistance of a metal near absolute zero?"

H. K. Onnes

1911 ... IT'S SUPERCONDUCTIVITY ...!!

- Discovered by Kamerlingh Onnes in 1911 during first low temperature measurements to liquefy helium
- Whilst measuring the resistivity of Hg he noticed that the electrical resistance dropped to zero at 4.2K
- In 1912 he found that the resistive state is restored in a magnetic field or at high transport currents

BCS THEORY ... 1957

- The BCS theory proposed by Bardeen, Cooper, and Schrieffer, in 1957, was the first to offer a microscopic explanation to amazing properties of superconductors
- A key conceptual element in this theory is the pairing of electrons close to the Fermi level into Cooper pairs through interaction with the crystal lattice
- This paring results from a slight attraction between the electrons related to lattice vibrations

BEYOND BCS THEORY

K-(BEDT-TTF)2X FAMILY

 The κ-(BEDT-TTF)₂X family compounds are formed by a stack of conductor planes (BEDT-TTF) separated by insulating planes (anions X)

Bis Ethylenedithio-tetrathiafulvalene molecule (BEDT TTF)

$\textbf{WHY} \ltimes \textbf{-(ET)}_2 \textbf{CUNCS}_2?$

K-(BEDT-TTF)₂CUNCS₂

- κ -(BEDT TTF)₂Cu (NCS)₂ is a superconductor in the vicinity of the Mott insulator phase
- Superconductivity below T_c= 10.4 K
- Superconductivity is suppressed at the rate of dT/dP = -3K/1kbar

BEFORE MEASUREMENTS ...

preparation of gold contacts

sample assembly

How the sample looks like

We are using the fact that high magnetic field kills superconductivity :

Big contribution of transverse resistivity ρ_c :

 $\rho(T)$ at H = 9 Tesla

• At H = 9T, the electrical resistivity as a function of temperature follows neither a linear law nor a pure quadratic law: $\rho = \rho_0 + AT + BT^2$ (weak ρ_c component visible)

We obtain $A = 2 \ \mu\Omega$. cm. K^{-1} , $B = 5 \ \mu\Omega$. cm. K^{-2} and $\rho_0 = 589 \ \mu\Omega$. cm

APPLYING PRESSURE ...

The pressure cell ...

17

Under a hydrostatic pressure of 10kbar, the electrical resistivity follows a pure quadratic law as a function of temperature: $\rho = \rho_0 + BT^2$

We obtain $B = 0.4 \ \mu\Omega$. cm. K^{-2} , $\rho_0 = 136 \ \mu\Omega$. cm. The residual resistivity was divided by factor of 2. The value of B was divided by a factor of 10 which demonstrates the weakening of the e-e- interactions upon applying pressure

Many exotic compounds exhibit a resistivity linear in temperature, the origin of which is not well understood ...

LINEAR RESISTIVITY IN DIFFERENT COMPOUNDS ... (_____)

For non interacting electrons :

Drude Formula: $\rho = \frac{m^*}{ne^2 \tau}$, n: carrier density, m^* : effective mass J. A. N. Bruin et al. science 2013 Feb 15:339(6121):804–7 At T \rightarrow 0, $\tau = \alpha \frac{\hbar}{k_{P}T}$, α =1: Planck time .CeRu₂Si CeĆo**l**n, ${\sf Bi}_2{\sf Sr}_2{\sf Ca}_{0.92}{\sf Y}_{0.08}{\sf Cu}_2{\sf O}_{8+\delta}$ 7*e*²/(*k*_B*k*_F)(*dp*/*dT*) (m/s)⁻ Sr₃Ru₂O₇ 10⁻⁵ Sr₃κu₂v₇ BaFe₂(P_{0.3}As_{0.7})₂ Pd Pd Pd At T \rightarrow 0, $\rho(T) = \rho_0 + AT$, A = $\frac{m^*}{ne^2} \frac{1}{\tau} \frac{1}{T} = \alpha \frac{m^*}{n} \frac{k_B}{e^2 \hbar}$ (TMTSF)₂PF_€ 10⁻⁶ In 2D system, $A^{\blacksquare} = \alpha \frac{h}{2e^2} \frac{1}{T_F}$ with $T_F = \frac{\pi \hbar^2}{k_F} \frac{nd}{m^*}$ ₹ Cu (10 K) 10⁻⁹ 105 106 $v_{\rm F}$ (m/s)

LINEAR RESISTIVITY IN DIFFERENT COMPOUNDS ... (______)

Material	Doping (p) Pressure (P)	n (10 ²⁷ m^{-3})	m * (m ₀)	A/d (Ω/K)	$h/(2e^2T_F)$ (Ω/K)	α
* LSCO	p = 0.26	7.8	9.8 ± 1.7	8.2 ± 1.0	8.9 ± 1.8	0.9 ± 0.3
Nd-LSCO	p = 0.24	7.9	12 ± 4	7.4 ± 0.8	10.6 ± 3.7	0.7 ± 0.4
РССО	x = 0.1 7	8.8	2.4 ± 0.1	1.7 ± 0.3	2.1 ± 0.1	0.8 ± 0.2
LCCO	x = 0.15	9.8	3.0 ± 0.3	3.0 ± 0.45	2.6 ± 0.3	1.2 ± 0.3
(TMTSF) ₂ PF ₆	P = 11kbar	1.4	$\textbf{1.15} \pm \textbf{0.2}$	2.8 ± 0.3	2.8 ± 0.4	1.0 ± 0.3
ET ₂ Cu(NCS) ₂		** 0.6	3.5	560	260	2

* A.Legros et al, arXiv:1805.02512v1 (2018)

** K. Murata Solid State Communications, Vol.75, (1990)

CONCLUSION

In-plane resistivity, ρ_{ab} , exhibits a linear behavior at low temperature in (ET)₂CuNCS₂ The linear term is suppressed at large pressure which suggests that it is directly related to the superconductivity Study of other κ -(BEDT TTF)₂ X materials and comparison with cuprates and (TMTSF)₂PF₆

THUS

Any questions?

