Cookies #4

Quentin Barthélemy 09-20-18

LEPTONS

Everyday matter is made of 1st generation particles

e.g.

 β^- decay: ${}^{14}C \rightarrow {}^{14}N + e^- + \overline{\nu_e}$

The 2nd generation exception: the **muon**

What can be learnt from firing these exotic particles into magnetic materials ? Cosmic rays provide a major source of muons Vertically, on earth's surface: ~ 1 muon / cm² / min

	charge	spin	mass	moment	γ / 2π	lifetime	
					$(kHz G^{-1})$	(μs)	
е	±e	1/2	т _е = 0.51 МеV	657 μ_{p}	2800	∞	
μ	±е	1/2	<mark>207 m</mark> e = 105.7 MeV	3.18 $\mu_{ m p}$	13.5	2.19	
р	±e	1/2	1836 m _e = 938 MeV	μ_{p}	4.26	∞	

	charge	spin	mass	moment	γ / 2π	lifetime
					$(kHz G^{-1})$	(μs)
е	±e	1/2	т _е = 0.51 МеV	657 μ_{p}	2800	∞
μ	±е	1/2	<mark>207 m</mark> e = 105.7 MeV	3.18 $\mu_{ m p}$	13.5	2.19
р	±e	1/2	1836 m _e = 938 MeV	μ_{p}	4.26	∞

What happens when they arrive into dense matter ?

	charge	spin	mass	moment	γ / 2π	lifetime	
					$(kHz G^{-1})$	(μs)	
е	±e	1/2	m _e = 0.51 MeV	657 μ_{p}	2800	∞	
μ	±е	1/2	207 m _e = 105.7 MeV	3.18 $\mu_{ m p}$	13.5	2.19	
р	±e	1/2	1836 m _e = 938 MeV	μ_{p}	4.26	∞	

They stop and then die

Scattering is not involved

LETTER

21 December 2017

doi:10.1038/nature24647

Discovery of a big void in Khufu's Pyramid by observation of cosmic-ray muons

Kunihiro Morishima¹, Mitsuaki Kuno¹, Akira Nishio¹, Nobuko Kitagawa¹, Yuta Manabe¹, Masaki Moto¹, Fumihiko Takasaki², Hirofumi Fujii², Kotaro Satoh², Hideyo Kodama², Kohei Hayashi², Shigeru Odaka², Sébastien Procureur³, David Attié³, Simon Bouteille³, Denis Calvet³, Christopher Filosa³, Patrick Magnier³, Irakli Mandjavidze³, Marc Riallot³, Benoit Marini⁴, Pierre Gable⁵, Yoshikatsu Date⁶, Makiko Sugiura⁷, Yasser Elshayeb⁸, Tamer Elnady⁹, Mustapha Ezzy⁸, Emmanuel Guerriero⁵, Vincent Steiger⁴, Nicolas Serikoff⁴, Jean-Baptiste Mouret^{10,11,12}, Bernard Charlès¹³, Hany Helal^{4,8} & Mehdi Tayoubi^{4,13}

	charge	spin	mass	moment	γ / 2π	lifetime	
					$(kHz G^{-1})$	(μs)	
е	±e	1/2	т _е = 0.51 МеV	657 μ_{p}	2800	∞	
μ	±е	1/2	<mark>207 m</mark> e = 105.7 MeV	3.18 $\mu_{ m p}$	13.5	2.19	
р	±e	1/2	1836 m _e = 938 MeV	μ_{p}	4.26	∞	

	charge	spin	mass	moment	γ / 2π	lifetime	
					$(kHz G^{-1})$	(μs)	
е	±e	1/2	т _е = 0.51 МеV	657 μ_{p}	2800	∞	
μ	±е	1/2	207 m _e = 105.7 MeV	3.18 $\mu_{ m p}$	13.5	2.19	
р	±e	1/2	1836 m _e = 938 MeV	μ_{p}	4.26	∞	

Large gyromagnetic ratio γ (~ 3 × proton's)

Muons are very sensitive to magnetic fields

	charge	spin	mass	moment	γ / 2π	lifetime	
					$(kHz G^{-1})$	(μs)	
е	±e	1/2	т _е = 0.51 МеV	657 $\mu_{ m p}$	2800	∞	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
μ	±е	1/2	207 m _e = 105.7 MeV	3.18 $\mu_{ m p}$	13.5	2.19	
р	±e	1/2	1836 m _e = 938 MeV	μ_{p}	4.26	∞	

The muon decay is a 3 body process

$$\mu^+ \longrightarrow e^+ + \nu_e + \overline{\nu_\mu}$$

 e^+

 s_{μ}

The weak interaction do not conserve parity

The emitted positron emerges predominantly along the direction of the muon spin

e⁻

No B_{ext} needed: non-perturbative technique

Probe of B_{loc} in a *local* & *bulk* way

What to expect ? *The field distribution approach* Kind of $B_{loc} \leftrightarrow$ kind of μ^+SR spectrum

What to expect ? (Take home summary) *Amplitude / Frequency / Damping*

Amplitude: magnetic volume fraction (hom./inhom.)

Frequency: average local (on-site) magnetic field

Damping: field distribution / magnetic fluctuations

A (straightforward) fisrt example

A second example

A sodium cobaltate that undergoes an AF transition

4 frequencies \rightarrow 4 stopping sites

Long-time asymmetry $\sim 1/3$ initial asymmetry \rightarrow fully static magnetism

A third example: a Quantum Spin Liquid

- Paratacamites family: $Zn_{x}Cu_{1-x}(OH)_{6}Cl_{2}$
- The end member (x = 1) is the celebrated Herbertsmithite
- First experimental realization of the Kagome Heisenberg AntiFerromagnet
- First experimental evidence of a QSL ground state with ZF μ +SR

SQM team « NMR » team

It stands for *Spectroscopies of Quantum Materials*.

Permanent

P. Mendels

F. Bert

V. Brouet

E. Kermarrec

H. Alloul

PhD, Post-doc

A. Louat

R. Sharma

B. Le Pennec

G. Simutis

Techniques

INS

Thank you !

