A Bubble’s Odyssey

Or what is the fate of a bubble in a carbonated beverage?
Jonas Miguet

Outlook

- General considerations

- Birth
- Growth
- Detachment
- Flying to the sky

- On the edge 숨
- Bursting through the sky
- Outcome 5

Supersaturation

Henri's equilibrium :

$$
P_{g}=K h(T) * C_{g}
$$

Condition for a bubble to grow

- Creation of interface => energy cost
- Volumic extension ie work creation => energy gain

Metastable equilibrium

Existence of a critical radius
$R_{C} \sim \frac{2 \gamma}{P_{0} S} \sim 1 \mu m$
γ : surface tension [N.m ${ }^{-1}$]
=>Supersaturation is necessary but not sufficient for the spontaneous occurrence of a bubble
(Therefore water does not boil per se at $100^{\circ} \mathrm{C}$...)
=>In practice, nucleation sites pre-exist

Birth

Formation of nucleation sites

Asperities

Bankoff, 1958
Condition for gas entrapment :

$$
\underbrace{180-2 \Phi}_{\text {Cone angle }}<\underbrace{\theta}_{\substack{\text { Advancing contact } \\ \text { angle }}}
$$

If this condition is met, a gas pocket can be formed

Impurities/Seeds

More generally met in your glasses (fibers)

Turbulent eddies can also serve as nucleation sites =>lean your glass to avoid foam occurence/gas losses

Cellulose fiber adsorbed «Flying » cellulose fiber, on a glass wall serving as nucleation site

Growth

Determines the rate of bubble production for a given nucleation site and the size of bubbles at the air/liquid interface

Growth rate is proportionnal to:

```
\(t^{1 / 2} \quad\) if the liquid is at rest \(t\) otherwise
```

Was shown to be $\alpha \mathrm{t}$ in the case of carbonated water in a glass

Detatchment

The radius of the detaching bubble results from a balance between gravity and Gas-Liquid interfacial tension.

$$
R_{b}=\left(\frac{3}{2} \frac{R_{c} \gamma}{\Delta \rho g}\right)^{1 / 3}
$$

R_{c} and therefore R_{b} are increased at detachment for non wetting solid surfaces => bubbles are bigger in a plastic gobelet than in a glass

Detatchment

The radius of the detaching bubble results from a balance between gravity and Gas-Liquid interfacial tension.

$$
R_{b}=\left(\frac{3}{2} \frac{R_{c} \gamma}{\Delta \rho g}\right)^{1 / 3}
$$

R_{c} and therefore R_{b} are increased at detachment for non wetting solid surfaces => bubbles are bigger in a plastic gobelet than in a real glass

Because of this, if you remove gravity, you end up with some kind of foam with huge bubbles.

These guys didn't drink Champagne on July $17^{\text {th }} 1975$.

Flying to the sky

The bubble keeps growing while rising through the liquid. The buyancy force increases, the bubble accelerates.
=> An elongated glass features bigger bubbles than a « flatter » one.

Flying to the sky

The bubble keeps growing while rising through the liquid. The buyancy force increases, the bubble accelerates.
=> An elongated glass features bigger bubbles than a « flatter » one.

Surface active compounds may slow down the ascent of the bubble

On the edge

- The bubble reaches the upper boundary of its native liquid environment.
- Some part of it emerges while another remains under the surface level.

Bubble shape dependance on its size

- It takes an equilibrium macroscopic shape, in the form of a spherical cap and its lifetime is counted from now on because of the film thinning and subsequent inevitable rupture.

Bursting through the sky

Bursting bubble and subsequent «Worthington Jet ». Frame rate $3.75 \mathrm{~s}^{-1}$

Fast pressure drop inside the bubble.
Hydrostatic and curvature-induced pressure not balanced => Worthington Jet

Bursting through the sky

Aerosols production : 2 mechanisms

Destabilisation of the Worthington Jet

Up to several droplets
Tipically $100 \mu \mathrm{~m}$

Thin film atomization

Up to few hundreeds of droplets Tipically $100 \mu m$

Outcome

- Bubbles promote the exchanges of mass (and heat) from the bulk to the atmosphere
\Rightarrow Impact on fizzy drinks consumer's sensations
\rightarrow Also matters for the climate modelling (aerosols allow for cloud production)

Outcome

- Bubbles promote the exchanges of mass (and heat) from the bulk to the atmosphere
\Rightarrow Impact on fizzy drinks consumer's sensations
\rightarrow Also matters for the climate modelling (aerosols allow for cloud production)
- Don't forget to drink alcohol with moderation

Thank you for you attention!

