





# A Bubble's Odyssey

#### Or what is the fate of a bubble in a carbonated beverage?

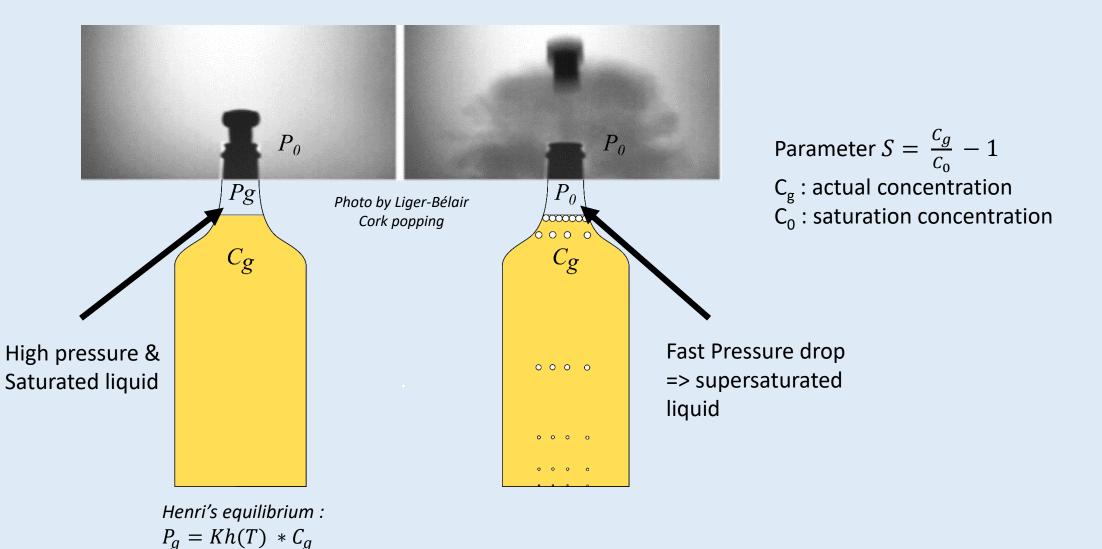
Jonas Miguet



# Outlook

General considerations




- Birth
- Growth
- Detachment
- Flying to the sky
- On the edge
- Bursting through the sky







#### Supersaturation



3

General Considerations

# Condition for a bubble to grow

- Creation of interface => energy cost
- Volumic extension ie work creation => energy gain

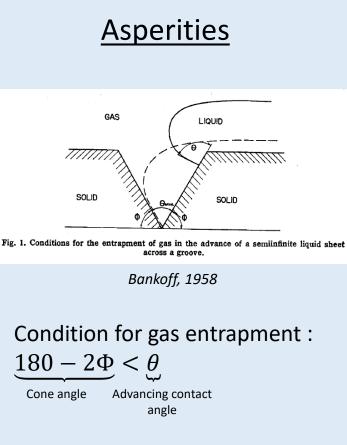


Metastable equilibrium

Existence of a critical radius  $R_c \sim \frac{2\gamma}{P_0 S} \sim 1 \mu m$  $\gamma$  : surface tension [N.m<sup>-1</sup>]

=>Supersaturation is necessary but not sufficient for the spontaneous occurrence of a bubble (Therefore water does not boil per se at 100°C...)

=>In practice, nucleation sites pre-exist


General Considerations

R

Ward et al., J. Basic Engin., 1970

### Birth

Formation of nucleation sites



If this condition is met, a gas pocket can be formed

#### **Impurities/Seeds**

More generally met in your glasses (fibers)





Photos by Liger-Bélair

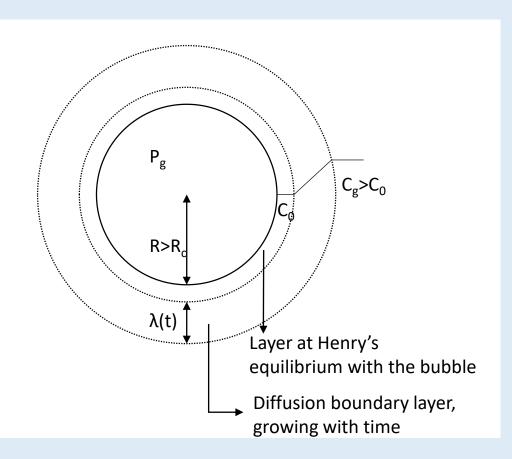
Cellulose fiber adsorbed on a glass wall

« Flying » cellulose fiber, serving as nucleation site

Turbulent eddies can also serve as nucleation sites =>lean your glass to avoid foam occurence/gas losses

Birth



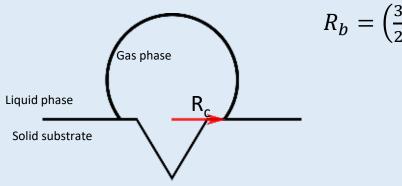

# Growth

Determines the rate of bubble production for a given nucleation site and the size of bubbles at the air/liquid interface

Growth rate is proportionnal to:

| $t^{1/2}$ | if the liquid is at rest |
|-----------|--------------------------|
| t         | otherwise                |

Was shown to be  $\alpha$  t in the case of carbonated water in a glass



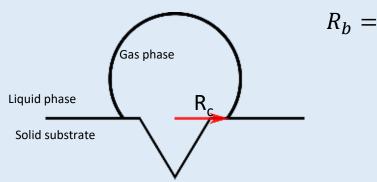

Growth



#### Detatchment

The radius of the detaching bubble results from a balance between gravity and Gas-Liquid interfacial tension.

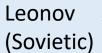



$$R_b = \left(\frac{3}{2} \, \frac{R_c \gamma}{\Delta \rho g}\right)^{1/3}$$

 $R_c$  and therefore  $R_b$  are increased at detachment for non wetting solid surfaces => bubbles are bigger in a plastic gobelet than in a glass



### Detatchment


The radius of the detaching bubble results from a balance between gravity and Gas-Liquid interfacial tension.



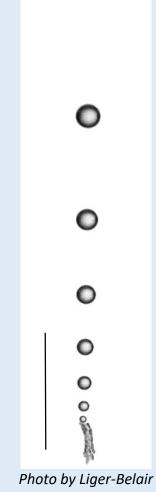
$$R_b = \left(\frac{3}{2} \frac{R_c \gamma}{\Delta \rho g}\right)^{1/3}$$

 $R_c$  and therefore  $R_b$  are increased at detachment for non wetting solid surfaces => bubbles are bigger in a plastic gobelet than in a real glass

Because of this, if you remove gravity, you end up with some kind of foam with huge bubbles.

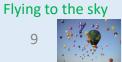





Stafford (American) These guys didn't drink Champagne on July 17<sup>th</sup> 1975.



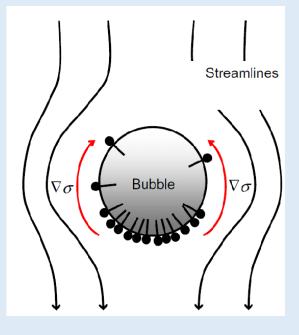
# Flying to the sky


The bubble keeps growing while rising through the liquid. The buyancy force increases, the bubble accelerates.

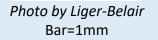
=> An elongated glass features bigger bubbles than a « flatter » one.



0


Bar=1mm




# Flying to the sky

The bubble keeps growing while rising through the liquid. The buyancy force increases, the bubble accelerates.

=> An elongated glass features bigger bubbles than a « flatter » one.



Surface active compounds may slow down the ascent of the bubble

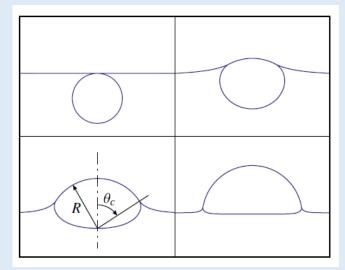


0

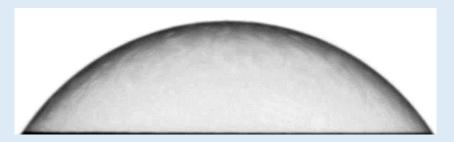
0

0

0


0

0

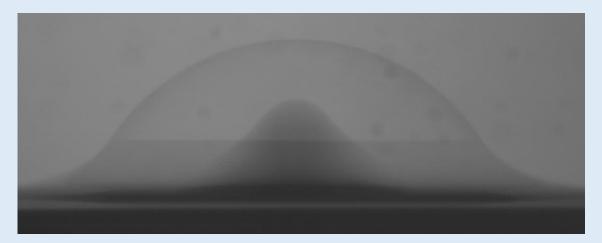



# On the edge

- The bubble reaches the upper boundary of its native liquid environment.
- Some part of it emerges while another remains under the surface level.
- It takes an equilibrium macroscopic shape, in the form of a spherical cap and its lifetime is counted from now on because of the film thinning and subsequent inevitable rupture.



Bubble shape dependance on its size




*Just for the beauty of it...* A bubble at the surface of a liquid container

On the edge



### Bursting through the sky



Bursting bubble and subsequent « Worthington Jet ». Frame rate 3.75 s<sup>-1</sup>

Fast pressure drop inside the bubble.

Hydrostatic and curvature-induced pressure not balanced => Worthington Jet

Bursting through the sky

## Bursting through the sky

Aerosols production : 2 mechanisms

Destabilisation of the Worthington Jet



Up to several droplets Tipically 100  $\mu m$ 

Thin film atomization



Up to few hundreeds of droplets Tipically 100  $\mu m$ 

Bursting through the sky



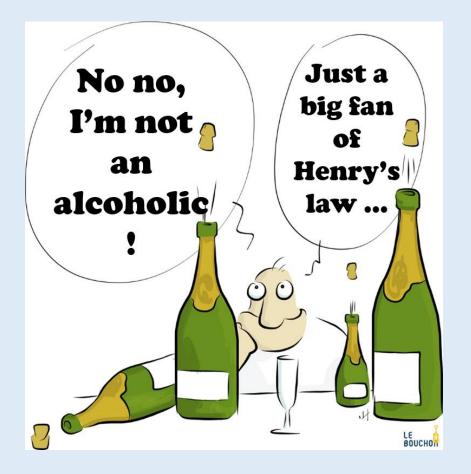
# Outcome

- Bubbles promote the exchanges of mass (and heat) from the bulk to the atmosphere
- →Impact on fizzy drinks consumer's sensations

→Also matters for the climate modelling (aerosols allow for cloud production)

Outcome




# Outcome

- Bubbles promote the exchanges of mass (and heat) from the bulk to the atmosphere
- →Impact on fizzy drinks consumer's sensations
- →Also matters for the climate modelling (aerosols allow for cloud production)
- Don't forget to drink alcohol with moderation

Outcome



# Thank you for you attention !

