

Introduction

Screening of dot's Spin

Supercurrent due to electron pair tunneling

Competition in DC properties (supercurrent, current-phase relation) **V Dynamics of this competition at high frequency?** Measuring the AC Josephson emission

Outline

CNT quantum dot

The Kondo effect and superconductivity

Collapse of the AC Josephson emission

Carbon Nanotube Quantum Dot

T=50mK

Gate voltage is applies to control number of electrons

U: Charging energy Γ: Coupling constant

$\Gamma \approx U$ Intermediate regime

Kondo effect in a quantum dot

Kondo screening of the dots impurity.

Kondo effect in a quantum dot

Kondo effect in a quantum dot

Kondo screening of the dots impurity.

Kondo effect for *T* < T_K

Superconducting electrodes
Δ: superconducting gap

would the Kondo screening survive the superconducting proximity effect??

Coexistence of the Kondo effect with superconductivity?

competition of strong electron correlations with a proximity effect

Supercurrent flow

• Kondo screening of the dot's spin

AC Josephson emission in CNT QD

AC Josephson emission in CNT QD

Supercurrent is small ≈ nA , how to detect the AC emission??

Diana WATFA-Cookies club

٦

SIS junction noise as quantum detector

SIS junction noise as quantum detector

SIS junction noise as quantum detector

Detection setup for the AC emission at low temperature

Growing the CNT by chemical vapor deposition (CVD)

SEM image of the CNT sample

Preparing the design using Designcad

6/26/2019

Preparing the design using Design cad

Sample fabrication

Experimental techniques

Low Temperature Measurment

If R_{CNT} and $R_{JJ} \leq 80 \ \Omega K$

Connecting the sample to the fridge by Al-Si wires

• Cryogenic cooling

Dilution fridge cooled down to T=50mK by mixture of He_3/He_4

Hope is still underway… Do you want to try again? ♦YES or NO

Normal state of the CNT quantum dot

<u>Kondo Ridge A</u>: $T_K = 1.1K$, U = 3.9meV, $\Gamma = 1.2meV$, $a = \frac{\Gamma_L}{\Gamma_R} = 3.3$

<u>Kondo Ridge B</u>: $T_K = 1.7K$, U = 3.7meV, $\Gamma = 1.4meV$, $a = \frac{\Gamma_L}{\Gamma_R} = 2.5$

Diana WATFA-Cookies club

Switching current of the CNT Josephson junction

6/26/2019

Diana WATFA-Cookies club

Collapse of the AC Josephson emission!!

Photo assisted tunneling current of the detector: $I_{PAT} \alpha AC josephson emission$

Collapse of the AC Josephson emission

Photo assisted tunneling current of the detector: $I_{PAT} \alpha AC josephson emission$

Strong reduction of the PAT current in the center of the Kondo Ridge B

Collapse of the AC Josephson emission in the Kondo region

6/26/2019

Diana WATFA-Cookies club

Interpretation

Kondo effect or Landau-Zener transition?

Collapse of AC Josephson emission in Kondo region only!! Kondo physics!

For $\nu = 12$ Ghz $\frac{h\nu}{k_B T_K} = 0.52$ and 0.34 for Kondo ridge A and B

Frequency cut-off of the Kondo effect ?

Cut-off seen in noise experiment : Delagrange et al. PRB (2018).

Calculating the ABS spectrum of the QD

6/26/2019

Conclusion

Competition between Kondo and Superconducting proximity effect : the two effect cooperate: DC supercurrent is enhanced

Conclusion

Competition between Kondo and Superconducting proximity effect : the two effect cooperate:
DC supercurrent is enhanced

Dynamics of this competition by detecting AC Josephson effect Using on chip Quantum detector.

2µm

Thank you for your attention

Diana WATFA-Cookies club